[/ DASK FOR PARALLEL COMPUTING CHEAT SHEET

See full Dask documentation at: http://dask.pydata.org/
DASK These instructions use the conda environment manager. Get yours at http://bit.ly/getconda

DASK QUICK INSTALL

Install Dask with conda conda install dask

Install Dask with pip pip install dask[complete]

DASK COLLECTIONS EASY TO USE BIG DATA COLLECTIONS

DASK DATAFRAMES PARALLEL PANDAS DATAFRAMES FOR LARGE DATA
Import import dask.dataframe as dd

Read CSV data df = dd.read csv('my-data.*.csv')

Read Parquet data df = dd.read parquet ('my-data.parquet")

Filter and manipulate data with Pandas syntax df['z'] = df.x + df.y

Standard groupby aggregations, joins, etc. result = df.groupby(df.z).y.mean ()
Compute result as a Pandas dataframe out = result.compute ()

Or store to CSV, Parquet, or other formats result.to_parquet ('my-output.parquet")
EXAMPLE df = dd.read csv('filenames.*.csv")

df.groupby (df.timestamp.day) \
.value.mean () .compute ()

Import import dask.array as da
Create from any array-like object import h5py

dataset = h5py.File('my-data.hdf5'") ['/group/dataset']
Including HFD5, NetCDF, or other x = da.from array(dataset, chunks=(1000, 1000))

on-disk formats.

Alternatively generate an array from arandom da.random.uniform(shape=(le4, led), chunks=(100, 100))
distribution.

Perform operations with NumPy syntax y = x.dot(x.T - 1) - x.mean(axis=0)
Compute result as a NumPy array result = y.compute ()
Or store to HDF5, NetCDF or other out = f.create dataset(...)
on-disk format x.store (out)
EXAMPLE with hS5py.File('my-data.hdf5') as f:
x = da.from array(f['/path'], chunks=(1000, 1000))
X —-= x.mean (axis=0)
out = f.create_dataset(...)
x.store (out)
DASK BAGS PARELLEL LISTS FOR UNSTRUCTURED DATA
Import import dask.bag as db
Create Dask Bag from a sequence b = db.from sequence(seq, npartitions)
Or read from text formats b = db.read text('my-data.*.json')
Map and filter results import Jjson
records = b.map (json.loads)
.filter (lambda d: d["name"] == "Alice")

Compute aggregations like mean, count, sum records.pluck ('key-name') .mean () .compute ()

Or store results back to text formats records.to_textfiles ('output.*.json")
EXAMPLE db.read text('s3://bucket/my-data.*.json')
.map (json.loads)
filter (lambda d: d["name"] == "Alice")

.to_textfiles('s3://bucket/output.*.json")

D ANACONDA CONTINUED ON BACK —

http://dask.pydata.org/
http://bit.ly/getconda

DASK COLLECTIONS (CONTINUED)

ADVANCED
Read from distributed file systems or df = dd.read parquet ('s3://bucket/myfile.parquet"')
cloud storage
Prepend prefixes like hdfs://, s3://, b = db.read text('hdfs:///path/to/my-data.*.json')
or gcs:// to paths
Persist lazy computations in memory df = df.persist()
Compute multiple outputs at once dask.compute (x.min (), x.max())
CUSTOM COMPUTATIONS FOR CUSTOM CODE AND COMPLEX ALGORITHMS
DASK DELAYED LAZY PARALLELISM FOR CUSTOM CODE
Import import dask
Wrap custom functions with the @dask.delayed
@dask.delayed annotation def load (filename) :
Delayed functions operate lazily, @dask.delayed
producing a task graph rather than def process(data):
executing immediately Ce
Passing delayed results to other load = dask.delayed (load)
delayed functions creates process = dask.delayed (process)
dependencies between tasks
Call functions in normal code data = [load(fn) for fn in filenames]
results = [process(d) for d in data]
Compute results to execute in parallel dask.compute (results)
CONCURRENT.FUTURES ASYNCHRONOUS REAL-TIME PARALLELISM
Import from dask.distributed import Client
Start local Dask Client client = Client ()
Submit individual task asynchronously future = client.submit (func, *args, **kwargs)
Block and gather individual result result = future.result ()
Process results as they arrive for future in as completed (futures):
EXAMPLE L = [client.submit (read, fn) for fn in filenames]
L = [client.submit (process, future) for future in L]
future = client.submit (sum, L)
result = future.result ()
SET UP CLUSTER HOW TO LAUNCH ON A CLUSTER
MANUALLY
Start scheduler on one machine $ dask-scheduler
Scheduler started at SCHEDULER ADDRESS:8786
Start workers on other machines hostl$ dask-worker SCHEDULER ADDRESS:8786
Provide address of the running scheduler host2$ dask-worker SCHEDULER ADDRESS:8786
Start Client from Python process from dask.distributed import Client

client = Client ('SCHEDULER ADDRESS:8786"')

ON A SINGLE MACHINE

Call Client() with no arguments for easy client = Client ()
setup on a single host

CLOUD DEPLOYMENT

See dask-kubernetes project for Google Cloud pip install dask-kubernetes

See dask-ec2 project for Amazon EC2 pip install dask-ec2

MORE RESOURCES

User Documentation dask.pydata.org
Technical documentation for distributed scheduler distributed.readthedocs.org
Report a bug github.com/dask/dask/issues

:’;:) ANACONDA :7;;:7;:137.c0m -info@anaconda.com - 512-776-1066

https://dask.pydata.org
http://distributed.readthedocs.org
https://github.com/dask/dask/issues
http://anaconda.com
mailto:info@continuum.io

